Lasing in dark and bright modes of a finite-sized plasmonic lattice
نویسندگان
چکیده
Lasing at the nanometre scale promises strong light-matter interactions and ultrafast operation. Plasmonic resonances supported by metallic nanoparticles have extremely small mode volumes and high field enhancements, making them an ideal platform for studying nanoscale lasing. At visible frequencies, however, the applicability of plasmon resonances is limited due to strong ohmic and radiative losses. Intriguingly, plasmonic nanoparticle arrays support non-radiative dark modes that offer longer life-times but are inaccessible to far-field radiation. Here, we show lasing both in dark and bright modes of an array of silver nanoparticles combined with optically pumped dye molecules. Linewidths of 0.2 nm at visible wavelengths and room temperature are observed. Access to the dark modes is provided by a coherent out-coupling mechanism based on the finite size of the array. The results open a route to utilize all modes of plasmonic lattices, also the high-Q ones, for studies of strong light-matter interactions, condensation and photon fluids.
منابع مشابه
Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams
We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmo...
متن کاملLasing action in strongly coupled plasmonic nanocavity arrays.
Periodic dielectric structures are typically integrated with a planar waveguide to create photonic band-edge modes for feedback in one-dimensional distributed feedback lasers and two-dimensional photonic-crystal lasers. Although photonic band-edge lasers are widely used in optics and biological applications, drawbacks include low modulation speeds and diffraction-limited mode confinement. In co...
متن کاملNonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays.
We study experimentally second-harmonic generation from arrays of split-ring resonators at oblique incidence and find conditions of more than 30-fold enhancement of the emitted second harmonic with respect to normal incidence. We show that these conditions agree well with a nonlinear Rayleigh-Wood anomaly relation and the existence of a surface lattice resonance at the second harmonic. The exis...
متن کاملPurified plasmonic lasing with strong polarization selectivity by reflection.
As miniaturized light sources of size beyond the optical diffraction limit, surface plasmon lasers are of particular interest for numerous exciting applications. Although convincing demonstrations of plasmonic lasing have been reported with the metal-insulator-semiconductor (MIS) hybrid design using semiconductor nanomaterials, it remains a challenge that conventional photonic lasing may be tri...
متن کاملStructured metal thin film as an asymmetric color filter: the forward and reverse plasmonic halos
We observe asymmetric color filtering under unpolarized incidence in a structured metallic (Ag) film, where the center of an optically thick circular Ag disk surrounded by a step gap appears dark when observed from one side, and bright from the other. The latter situation corresponds to abnormally high optical transmission through the optically thick film. We explain this by a three-step proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017